准确的睡眠阶段分类对于睡眠健康评估很重要。近年来,已经开发了几种基于深度学习和机器学习的睡眠阶段算法,并且在人类注释方面取得了表现。尽管性能提高,但最深入学习算法的局限性是其黑盒行为,它限制了它们在临床环境中的使用。在这里,我们提出了跨模式变压器,这是一种基于变压器的睡眠阶段分类的方法。我们的模型通过最先进的方法实现了竞争性能,并通过利用注意模块的可解释性方面消除了深度学习模型的黑盒行为。提出的跨模式变压器由一种新型的跨模式变压器编码器结构以及多尺度的一维卷积神经网络组成,用于自动表示学习。基于此设计的我们的睡眠阶段分类器能够以与最先进的方法相同或更好地达到睡眠阶段分类性能,以及可解释性,参数数量减少了四倍,并且比较培训时间减少了。到当前的最新。我们的代码可从https://github.com/jathurshan0330/cross-modal-transformer获得。
translated by 谷歌翻译
ICECUBE是一种用于检测1 GEV和1 PEV之间大气和天体中微子的光学传感器的立方公斤阵列,该阵列已部署1.45 km至2.45 km的南极的冰盖表面以下1.45 km至2.45 km。来自ICE探测器的事件的分类和重建在ICeCube数据分析中起着核心作用。重建和分类事件是一个挑战,这是由于探测器的几何形状,不均匀的散射和冰中光的吸收,并且低于100 GEV的光,每个事件产生的信号光子数量相对较少。为了应对这一挑战,可以将ICECUBE事件表示为点云图形,并将图形神经网络(GNN)作为分类和重建方法。 GNN能够将中微子事件与宇宙射线背景区分开,对不同的中微子事件类型进行分类,并重建沉积的能量,方向和相互作用顶点。基于仿真,我们提供了1-100 GEV能量范围的比较与当前ICECUBE分析中使用的当前最新最大似然技术,包括已知系统不确定性的影响。对于中微子事件分类,与当前的IceCube方法相比,GNN以固定的假阳性速率(FPR)提高了信号效率的18%。另外,GNN在固定信号效率下将FPR的降低超过8(低于半百分比)。对于能源,方向和相互作用顶点的重建,与当前最大似然技术相比,分辨率平均提高了13%-20%。当在GPU上运行时,GNN能够以几乎是2.7 kHz的中位数ICECUBE触发速率的速率处理ICECUBE事件,这打开了在在线搜索瞬态事件中使用低能量中微子的可能性。
translated by 谷歌翻译
巴西最高法院每学期收到数万案件。法院员工花费数千个小时来执行这些案件的初步分析和分类 - 这需要努力从案件管理工作流的后部,更复杂的阶段进行努力。在本文中,我们探讨了来自巴西最高法院的文件多模式分类。我们在6,510起诉讼(339,478页)的新型多模式数据集上训练和评估我们的方法,并用手动注释将每个页面分配给六个类之一。每个诉讼都是页面的有序序列,它们既可以作为图像存储,又是通过光学特征识别提取的相应文本。我们首先训练两个单峰分类器:图像上对Imagenet进行了预先训练的重新编织,并且图像上进行了微调,并且具有多个内核尺寸过滤器的卷积网络在文档文本上从SCRATCH进行了训练。我们将它们用作视觉和文本特征的提取器,然后通过我们提出的融合模块组合。我们的融合模块可以通过使用学习的嵌入来处理缺失的文本或视觉输入,以获取缺少数据。此外,我们尝试使用双向长期记忆(BILSTM)网络和线性链条件随机字段进行实验,以模拟页面的顺序性质。多模式方法的表现都优于文本分类器和视觉分类器,尤其是在利用页面的顺序性质时。
translated by 谷歌翻译
压力溃疡在ICU患者中具有很高的患病率,但如果以初始阶段识别,则可预防。在实践中,布拉登规模用于分类高风险患者。本文通过使用MIMIC-III V1.4中可用的数据调查了在电子健康中使用机器学习记录数据的使用。制定了两个主要贡献:评估考虑在住宿期间所有预测的模型的新方法,以及用于机器学习模型的新培训方法。结果与现有技术相比,表现出卓越的性能;此外,所有型号在精密召回曲线中的每个工作点都超过了Braden刻度。 - - les \〜oes por按\〜ao possuem alta preval \ ^ encia em pacientes de Uti e s \〜ao preven \'iveis ao serem endicidificadas em Est \'agios Iniciais。 na pr \'atica materiza-se a escala de braden para classifica \ c {c} \〜ao de pacientes em risco。 Este Artigo Investiga o Uso de Apenizado de M \'Aquina Em Dados de Registros Eletr \ ^ Onicos Para Este Fim,Parir Da Base dados Mimic-III V1.4。 s \〜ao feitas duas contribui \ c {c} \〜oes principais:uma nova abordagem para a avalia \ c {c} \〜ao dos modelos e da escala da escala de braden levando em conta todas作为predi \ c {c} \ 〜oes feitas ao longo das interna \ c {c} \〜oes,euro novo m \'etodo de treinamento para os modelos de aprendizo de m \'aquina。 os结果os overidos superam o estado da arte everifica-se que os modelos superam意义a escala de braden em todos oS pontos de Opera \ c {c} \〜〜ao da curva de precis \〜ao por sensibilidade。
translated by 谷歌翻译
Traditionally, data analysis and theory have been viewed as separate disciplines, each feeding into fundamentally different types of models. Modern deep learning technology is beginning to unify these two disciplines and will produce a new class of predictively powerful space weather models that combine the physical insights gained by data and theory. We call on NASA to invest in the research and infrastructure necessary for the heliophysics' community to take advantage of these advances.
translated by 谷歌翻译
Dataset scaling, also known as normalization, is an essential preprocessing step in a machine learning pipeline. It is aimed at adjusting attributes scales in a way that they all vary within the same range. This transformation is known to improve the performance of classification models, but there are several scaling techniques to choose from, and this choice is not generally done carefully. In this paper, we execute a broad experiment comparing the impact of 5 scaling techniques on the performances of 20 classification algorithms among monolithic and ensemble models, applying them to 82 publicly available datasets with varying imbalance ratios. Results show that the choice of scaling technique matters for classification performance, and the performance difference between the best and the worst scaling technique is relevant and statistically significant in most cases. They also indicate that choosing an inadequate technique can be more detrimental to classification performance than not scaling the data at all. We also show how the performance variation of an ensemble model, considering different scaling techniques, tends to be dictated by that of its base model. Finally, we discuss the relationship between a model's sensitivity to the choice of scaling technique and its performance and provide insights into its applicability on different model deployment scenarios. Full results and source code for the experiments in this paper are available in a GitHub repository.\footnote{https://github.com/amorimlb/scaling\_matters}
translated by 谷歌翻译
We seek methods to model, control, and analyze robot teams performing environmental monitoring tasks. During environmental monitoring, the goal is to have teams of robots collect various data throughout a fixed region for extended periods of time. Standard bottom-up task assignment methods do not scale as the number of robots and task locations increases and require computationally expensive replanning. Alternatively, top-down methods have been used to combat computational complexity, but most have been limited to the analysis of methods which focus on transition times between tasks. In this work, we study a class of nonlinear macroscopic models which we use to control a time-varying distribution of robots performing different tasks throughout an environment. Our proposed ensemble model and control maintains desired time-varying populations of robots by leveraging naturally occurring interactions between robots performing tasks. We validate our approach at multiple fidelity levels including experimental results, suggesting the effectiveness of our approach to perform environmental monitoring.
translated by 谷歌翻译
Any strategy used to distribute a robot ensemble over a set of sequential tasks is subject to inaccuracy due to robot-level uncertainties and environmental influences on the robots' behavior. We approach the problem of inaccuracy during task allocation by modeling and controlling the overall ensemble behavior. Our model represents the allocation problem as a stochastic jump process and we regulate the mean and variance of such a process. The main contributions of this paper are: Establishing a structure for the transition rates of the equivalent stochastic jump process and formally showing that this approach leads to decoupled parameters that allow us to adjust the first- and second-order moments of the ensemble distribution over tasks, which gives the flexibility to decrease the variance in the desired final distribution. This allows us to directly shape the impact of uncertainties on the group allocation over tasks. We introduce a detailed procedure to design the gains to achieve the desired mean and show how the additional parameters impact the covariance matrix, which is directly associated with the degree of task allocation precision. Our simulation and experimental results illustrate the successful control of several robot ensembles during task allocation.
translated by 谷歌翻译
This paper focuses on the broadcast of information on robot networks with stochastic network interconnection topologies. Problematic communication networks are almost unavoidable in areas where we wish to deploy multi-robotic systems, usually due to a lack of environmental consistency, accessibility, and structure. We tackle this problem by modeling the broadcast of information in a multi-robot communication network as a stochastic process with random arrival times, which can be produced by irregular robot movements, wireless attenuation, and other environmental factors. Using this model, we provide and analyze a receding horizon control strategy to control the statistics of the information broadcast. The resulting strategy compels the robots to re-direct their communication resources to different neighbors according to the current propagation process to fulfill global broadcast requirements. Based on this method, we provide an approach to compute the expected time to broadcast the message to all nodes. Numerical examples are provided to illustrate the results.
translated by 谷歌翻译
This paper introduces the Forgotten Realms Wiki (FRW) data set and domain specific natural language generation using FRW along with related analyses. Forgotten Realms is the de-facto default setting of the popular open ended tabletop fantasy role playing game, Dungeons & Dragons. The data set was extracted from the Forgotten Realms Fandom wiki consisting of more than over 45,200 articles. The FRW data set is constituted of 11 sub-data sets in a number of formats: raw plain text, plain text annotated by article title, directed link graphs, wiki info-boxes annotated by the wiki article title, Poincar\'e embedding of first link graph, multiple Word2Vec and Doc2Vec models of the corpus. This is the first data set of this size for the Dungeons & Dragons domain. We then present a pairwise similarity comparison benchmark which utilizes similarity measures. In addition, we perform D&D domain specific natural language generation using the corpus and evaluate the named entity classification with respect to the lore of Forgotten Realms.
translated by 谷歌翻译